Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
2.
Sci Rep ; 11(1): 6940, 2021 03 25.
Article in English | MEDLINE | ID: covidwho-1152875

ABSTRACT

A better understanding of temporal relationships between chest CT and labs may provide a reference for disease severity over the disease course. Generalized curves of lung opacity volume and density over time can be used as standardized references from well before symptoms develop to over a month after recovery, when residual lung opacities remain. 739 patients with COVID-19 underwent CT and RT-PCR in an outbreak setting between January 21st and April 12th, 2020. 29 of 739 patients had serial exams (121 CTs and 279 laboratory measurements) over 50 ± 16 days, with an average of 4.2 sequential CTs each. Sequential volumes of total lung, overall opacity and opacity subtypes (ground glass opacity [GGO] and consolidation) were extracted using deep learning and manual segmentation. Generalized temporal curves of CT and laboratory measurements were correlated. Lung opacities appeared 3.4 ± 2.2 days prior to symptom onset. Opacity peaked 1 day after symptom onset. GGO onset was earlier and resolved later than consolidation. Lactate dehydrogenase, and C-reactive protein peaked earlier than procalcitonin and leukopenia. The temporal relationships of quantitative CT features and clinical labs have distinctive patterns and peaks in relation to symptom onset, which may inform early clinical course in patients with mild COVID-19 pneumonia, or may shed light upon chronic lung effects or mechanisms of medical countermeasures in clinical trials.


Subject(s)
COVID-19/diagnostic imaging , Clinical Chemistry Tests , Hematologic Tests , Thorax/diagnostic imaging , Adult , COVID-19/blood , COVID-19/virology , Female , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/isolation & purification , Severity of Illness Index , Thorax/pathology , Tomography, X-Ray Computed
3.
Eur Radiol ; 31(5): 3165-3176, 2021 May.
Article in English | MEDLINE | ID: covidwho-910288

ABSTRACT

OBJECTIVES: The early infection dynamics of patients with SARS-CoV-2 are not well understood. We aimed to investigate and characterize associations between clinical, laboratory, and imaging features of asymptomatic and pre-symptomatic patients with SARS-CoV-2. METHODS: Seventy-four patients with RT-PCR-proven SARS-CoV-2 infection were asymptomatic at presentation. All were retrospectively identified from 825 patients with chest CT scans and positive RT-PCR following exposure or travel risks in outbreak settings in Japan and China. CTs were obtained for every patient within a day of admission and were reviewed for infiltrate subtypes and percent with assistance from a deep learning tool. Correlations of clinical, laboratory, and imaging features were analyzed and comparisons were performed using univariate and multivariate logistic regression. RESULTS: Forty-eight of 74 (65%) initially asymptomatic patients had CT infiltrates that pre-dated symptom onset by 3.8 days. The most common CT infiltrates were ground glass opacities (45/48; 94%) and consolidation (22/48; 46%). Patient body temperature (p < 0.01), CRP (p < 0.01), and KL-6 (p = 0.02) were associated with the presence of CT infiltrates. Infiltrate volume (p = 0.01), percent lung involvement (p = 0.01), and consolidation (p = 0.043) were associated with subsequent development of symptoms. CONCLUSIONS: COVID-19 CT infiltrates pre-dated symptoms in two-thirds of patients. Body temperature elevation and laboratory evaluations may identify asymptomatic patients with SARS-CoV-2 CT infiltrates at presentation, and the characteristics of CT infiltrates could help identify asymptomatic SARS-CoV-2 patients who subsequently develop symptoms. The role of chest CT in COVID-19 may be illuminated by a better understanding of CT infiltrates in patients with early disease or SARS-CoV-2 exposure. KEY POINTS: • Forty-eight of 74 (65%) pre-selected asymptomatic patients with SARS-CoV-2 had abnormal chest CT findings. • CT infiltrates pre-dated symptom onset by 3.8 days (range 1-5). • KL-6, CRP, and elevated body temperature identified patients with CT infiltrates. Higher infiltrate volume, percent lung involvement, and pulmonary consolidation identified patients who developed symptoms.


Subject(s)
COVID-19 , SARS-CoV-2 , China/epidemiology , Disease Outbreaks , Humans , Japan , Retrospective Studies , Tomography, X-Ray Computed
4.
Nat Commun ; 11(1): 4080, 2020 08 14.
Article in English | MEDLINE | ID: covidwho-717116

ABSTRACT

Chest CT is emerging as a valuable diagnostic tool for clinical management of COVID-19 associated lung disease. Artificial intelligence (AI) has the potential to aid in rapid evaluation of CT scans for differentiation of COVID-19 findings from other clinical entities. Here we show that a series of deep learning algorithms, trained in a diverse multinational cohort of 1280 patients to localize parietal pleura/lung parenchyma followed by classification of COVID-19 pneumonia, can achieve up to 90.8% accuracy, with 84% sensitivity and 93% specificity, as evaluated in an independent test set (not included in training and validation) of 1337 patients. Normal controls included chest CTs from oncology, emergency, and pneumonia-related indications. The false positive rate in 140 patients with laboratory confirmed other (non COVID-19) pneumonias was 10%. AI-based algorithms can readily identify CT scans with COVID-19 associated pneumonia, as well as distinguish non-COVID related pneumonias with high specificity in diverse patient populations.


Subject(s)
Artificial Intelligence , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Tomography, X-Ray Computed/methods , Adolescent , Adult , Aged , Aged, 80 and over , Algorithms , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Child , Child, Preschool , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Deep Learning , Female , Humans , Imaging, Three-Dimensional/methods , Lung/diagnostic imaging , Male , Middle Aged , Pandemics , Pneumonia, Viral/virology , Radiographic Image Interpretation, Computer-Assisted/methods , SARS-CoV-2 , Young Adult
5.
Radiol Med ; 125(9): 894-901, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-639965

ABSTRACT

Preparedness for the ongoing coronavirus disease 2019 (COVID-19) and its spread in Italy called for setting up of adequately equipped and dedicated health facilities to manage sick patients while protecting healthcare workers, uninfected patients, and the community. In our country, in a short time span, the demand for critical care beds exceeded supply. A new sequestered hospital completely dedicated to intensive care (IC) for isolated COVID-19 patients needed to be designed, constructed, and deployed. Along with this new initiative, the new concept of "Pandemic Radiology Unit" was implemented as a practical solution to the emerging crisis, born out of a critical and urgent acute need. The present article describes logistics, planning, and practical design issues for such a pandemic radiology and critical care unit (e.g., space, infection control, safety of healthcare workers, etc.) adopted in the IC Hospital Unit for the care and management of COVID-19 patients.


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Cross Infection/prevention & control , Hospital Design and Construction , Hospitals, Isolation/organization & administration , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Radiology Department, Hospital/organization & administration , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Humans , Intensive Care Units/organization & administration , Italy/epidemiology , Personal Protective Equipment , Personnel Staffing and Scheduling/organization & administration , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , Radiography , SARS-CoV-2 , Tomography, X-Ray Computed/instrumentation , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL